Respuesta :

frika

Answer:

[tex]b_n=\dfrac{2}{3}\cdot (9)^{n-1}[/tex]

Step-by-step explanation:

Given the geometric sequence

[tex]a_1=\dfrac{2}{3}\\ \\a_n=3a_{n-1},[/tex]

then

[tex]a_1=\dfrac{2}{3}\\ \\a_2=3a_1=3\cdot \dfrac{2}{3}=2\\ \\a_3=3a_2=3\cdot 2=6\\ \\a_4=3a_3=3\cdot 6=18\\ \\a_5=3a_4=3\cdot 18=54\\ \\...[/tex]

Hence,

[tex]b_1=a_1=\dfrac{2}{3}\\ \\b_2=a_3=6=\dfrac{2}{3}\cdot 9\\ \\b_3=a_5=54=\dfrac{2}{3}\cdot 9^2\\ \\...[/tex]

Thus, the explicit formula is

[tex]b_n=\dfrac{2}{3}\cdot (9)^{n-1}[/tex]