contestada

For each initial value problem, determine whether Picard's Theorem can be used to show the existence of a unique solution in an open interval containing t = 0. Justify your answer.

(a) y' = ty4/3, y(0) = 0
(b) y' = tył/3, y(0) = 0
(c) y' = tył/3, y(0) = 1

Respuesta :

Answer:

Part a: [tex]f , \, f_y[/tex] is continuous at the initial value (0,0) so due to Picardi theorem there exists an interval such that the IVP has a unique solution.

Part b: [tex]f_y[/tex] is not continuous at the initial value (0,0) so due to Picardi theorem there does not exist an interval such that the IVP has a unique solution.

part c: [tex]f , \, f_y[/tex] is continuous at the initial value (0,1) so due to Picardi theorem there exists an interval such that the IVP has a unique solution.

Step-by-step explanation:

Part a

as [tex]y^{' }=ty^{4/3}[/tex]

Let

[tex]f(t,y)=ty^{4/3}[/tex]

Now derivative wrt y is given as

[tex]f_y=\frac{4}{3}ty^{1/3}[/tex]

Finding continuity via the initial value

[tex]f[/tex] is continuous on [tex]R^2[/tex] also [tex]f_y[/tex] is also continuous on [tex]R^2[/tex]

Also

[tex]f , \, f_y[/tex] is continuous at the initial value (0,0) so due to Picardi theorem there exists an interval such that the IVP has a unique solution.

Part b

as [tex]y^{' }=ty^{1/3}[/tex]

Let

[tex]f(t,y)=ty^{1/3}[/tex]

Now derivative wrt y is given as

[tex]f_y=\frac{1}{3}ty^{-2/3}[/tex]

Finding continuity via the initial value

[tex]f[/tex] is continuous on [tex]R^2[/tex] also [tex]f_y[/tex] is also continuous on [tex]R^2[/tex]

Also

[tex]f_y[/tex] is not continuous at the initial value (0,0) so due to Picardi theorem there does not exist an interval such that the IVP has a unique solution.

Part c

as [tex]y^{' }=ty^{1/3}[/tex]

Let

[tex]f(t,y)=ty^{1/3}[/tex]

Now derivative wrt y is given as

[tex]f_y=\frac{1}{3}ty^{-2/3}[/tex]

Finding continuity via the initial value

[tex]f[/tex] is continuous on [tex]R^2[/tex] also [tex]f_y[/tex] is also continuous on [tex]R^2[/tex] when [tex]y\neq 0[/tex]

Also

[tex]f , \, f_y[/tex] is continuous at the initial value (0,1) so due to Picardi theorem there exists an interval such that the IVP has a unique solution.