A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the origin, at t = 0 and moves to the right. The amplitude of its motion is 2.00 cm, and the frequency is 1.50 Hz(a) show that the position of the particle is given by x = (2.00 cm) sin(3.00πt) (b) the maximum speed and the earliest time (t > 0) at which the particle has this speed, (c) the maximum
acceleration and the earliest time (t > 0) at which the particle has this acceleration, and (d) the total distance traveled between t = 0 and t = 1.00 s.

Respuesta :

Answer:

(a). [tex]x=2.00\sin(3.00\pi t)[/tex], hence proved

(b). The maximum speed is 18.8 cm/s.

(c). The maximum  acceleration is 177.65 cm/s².

(d). The total distance is 12 cm.

Explanation:

Given that,

Amplitude = 2.00 cm

Frequency = 1.50 Hz

Given equation of position of the particle is

[tex]x=2.00\ sin(3.00\pit)[/tex]

(a). show that the position of the particle is given by

[tex]x=2.00\sin(3.00\pi t)[/tex]

We know the general equation of S.H.M

[tex]x=A\sin(\omega t[/tex]...(I)

At t =0, x = 0

On differentiating equation (I)

[tex]v=\dfrac{dx}{dt}[/tex]

[tex]v=A\omega\cos(\omega t)[/tex]

At t = 0, the particle moving to the right

[tex]V=A\omega[/tex] > 0

Given statement is true.

The equation of position is

[tex]x=A\sin(\omega t)[/tex]

here, [tex]\Omega= 2\pi f[/tex]

Put the value in the equation

[tex]x=2.00\sin(2\times1.50\pi t)[/tex]

[tex]x=2.00\sin(3.00\pi t)[/tex]

Hence proved.

(b). We need to calculate the maximum speed

[tex]V=A\omega\cos(\omega t)[/tex]....(II)

At t = 0,

[tex]V_{max}=A\omega[/tex]

Put the value into the formula

[tex]V_{max}=2.00\times2\pi\times1.50[/tex]

[tex]V_{max}=6\pi[/tex]

[tex]V_{max}=18.8\ cm/s[/tex]

(c). We need to calculate the maximum  acceleration

Using equation (II)

[tex]V=A\omega\cos(\omega t)[/tex]

On differentiating

[tex]a=\dfrac{dV}{dt}[/tex]

[tex]a=-A\omega^2\sin(\omega t)[/tex]

[tex]a_{max}\ when\ \sin(\omega t)\ is\ -1[/tex]

[tex]a_{max}=-A\omega^2\times-1[/tex]

[tex]a=A\omega^2[/tex]

[tex]a_{max}=2\times(3\pi)^2\approx 177.65 cm/s^2[/tex]

(d). We need to calculate the total distance traveled between t = 0 and t = 1.00 s

Using equation (II)

[tex]V=A\omega\cos(\omega t)[/tex]

On integration

[tex]\int{V}=\int_{t}^{t'}{A\omega\cos(\omega t)}[/tex]

Put the vale into the formula

[tex]\int{V}=\int_{0}^{1}{A\omega\cos(\omega t)}[/tex]

[tex]D=\int_{0}^{1}|6\pi\cos\left(3\pi t\right)|dt[/tex]

[tex]D=12\ cm[/tex]

Hence, (b). The maximum speed is 18.8 cm/s.

(c). The maximum  acceleration is 177.65 cm/s².

(d). The total distance is 12 cm.