A potential difference exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 1.35 × 10 − 20 J 1.35×10−20 J of work is required to eject a positive sodium ion (Na + ) (Na+) from the interior of the cell, what is the magnitude of the potential difference between the inner and outer surfaces of the cell?

Respuesta :

Answer:

Explanation:

Given

Work required [tex]W=1.35\times 10^{-20}\ J[/tex]

Work done to eject the sodium ion from interior of the cell is given by the product of charge and Potential difference between inner and outer surface of the cell.

[tex]W=q\times V[/tex]

Charge on sodium ion [tex]q=1.6\times 10^{19}\ C[/tex]

[tex]V=\frac{W}{q}[/tex]

[tex]V=\frac{1.35\times 10^{-20}}{1.6\times 10^{19}}[/tex]

[tex]V=0.0718\ V[/tex]            

The magnitude of the potential difference between the inner and outer surfaces of the cell is 0.0844 volt.

Potential difference:

When potential difference is V and charge of ion is q. Then, work required to eject a postive charge from the interior of cell is computed as,

                   Work  = q * V

It is given that, work W = [tex]1.35*10^{-20}J[/tex]

Charge on sodium ion , [tex]q=1.6*10^{-19}C[/tex]

Substituting above values in above relation.

                   [tex]V=\frac{W}{q}\\ \\V=\frac{1.35*10^{-20} }{1.6*10^{-19} }\\ \\V=0.0844Volt[/tex]

Hence, the magnitude of the potential difference between the inner and outer surfaces of the cell is 0.0844 volt.

Learn more about the potential difference here:

https://brainly.com/question/14306881