Respuesta :

Answer:

[tex]f(x)=8(x-\frac{1}{4})^{2}+\frac{21}{2}[/tex]

or

[tex]f(x)=8(x-0.25)^{2}+10.5[/tex]

Step-by-step explanation:

we have

[tex]f(x)=8x^{2}-4x+11[/tex]

This is a vertical parabola open upward (because the leading coefficient is positive)

The vertex is a minimum

Convert to vertex form

Factor the leading coefficient

[tex]f(x)=8(x^{2}-\frac{1}{2}x)+11[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]f(x)=8(x^{2}-\frac{1}{2}x+\frac{1}{16})+11-\frac{1}{2}[/tex]

[tex]f(x)=8(x^{2}-\frac{1}{2}x+\frac{1}{16})+\frac{21}{2}[/tex]

Rewrite as perfect squares

[tex]f(x)=8(x-\frac{1}{4})^{2}+\frac{21}{2}[/tex] ----> equation in vertex form

or

[tex]f(x)=8(x-0.25)^{2}+10.5[/tex]

The vertex is the point  (0.25,10.5)