Respuesta :

Answer:

(3, 0) and (5, 0)

Step-by-step explanation:

we have

[tex]y=x^{2}-8x+15[/tex]

we know that

The x-intercepts are the values of x when the value of y is equal to zero

so

For y=0

[tex]x^{2}-8x+15=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}-8x+15=0[/tex]  

so

[tex]a=1\\b=-8\\c=15[/tex]

substitute in the formula

[tex]x=\frac{-(-8)\pm\sqrt{-8^{2}-4(1)(15)}} {2(1)}[/tex]

[tex]x=\frac{8\pm\sqrt{4}} {2}[/tex]

[tex]x=\frac{8\pm2} {2}[/tex]

[tex]x=\frac{8+2} {2}=5[/tex]

[tex]x=\frac{8-2} {2}=3[/tex]

so

x=3, x=5

therefore

The x-intercepts are (3,0) and (5,0)