Binomial Distribution. Research shows that in the U.S. federal courts, about 90% of defendants are found guilty in criminal trials. Suppose we take a random sample of 25 trials. (For this problem it is best to use the Binomial Tables).Based on a proportion of .90, what is the variance of this distribution?

Respuesta :

Answer:

The variance of this distribution is 0.0036.

Step-by-step explanation:

The variance of n binomial distribution trials with p proportion is given by the following formula:

[tex]Var(X) = \frac{p(1-p)}{n}[/tex]

In this problem, we have that:

About 90% of defendants are found guilty in criminal trials. This means that [tex]p = 0.9[/tex]

Suppose we take a random sample of 25 trials. This means that [tex]n = 25[/tex]

Based on a proportion of .90, what is the variance of this distribution?

[tex]Var(X) = \frac{p(1-p)}{n}[/tex]

[tex]Var(X) = \frac{0.9*0.1}{25} = 0.0036[/tex]

The variance of this distribution is 0.0036.