Answer:
(a) 5.6 m/s, 7.2 m/s, and 8.8 m/s, respectively.
(b) 0.8 m/s^2
(c) 4.8 m/s
(d) 6 s
(e) 5.2 m
Explanation:
(a) The average velocity is equal to the total displacement divided by total time.
For the first 2s. interval:
[tex]V_{\rm avg} = \frac{\Delta x }{\Delta t} = \frac{25.6 - 14.4}{2} = 5.6~{\rm m/s}[/tex]
For the second 2s. interval:
[tex]V_{\rm avg} = \frac{40 - 25.6}{2} = 7.2~{\rm m/s}[/tex]
For the third 2s. interval:
[tex]V_{\rm avg} = \frac{57.6 - 40}{2} = 8.8~{\rm m/s}[/tex]
(b) Every 2 s. the velocity increases 1.6 m/s. Therefore, for each second the velocity increases 0.8 m/s. So, the acceleration is 0.8 m/s2.
(c) The sled starts from rest with an acceleration of 0.8 m/s2.
[tex]v^2 = v_0^2 + 2ax\\v^2 = 0 + 2(0.8)(14.4)\\v = 4.8~{\rm m/s}[/tex]
(d) The following kinematics equation will yield the time:
[tex]\Delta x = v_0 t + \frac{1}{2}at^2\\14.4 = 0 + \frac{1}{2}(0.8)t^2\\t = 6~{\rm s}[/tex]
(e) The same kinematics equation will yield the displacement:
[tex]\Delta x = v_0t + \frac{1}{2}at^2\\\Delta x = (4.8)(1) + \frac{1}{2}(0.8)1^2\\\Delta x = 5.2~{\rm m}[/tex]