Let Y1, Y2, . . . , Yn be independent, uniformly distributed random variables over the interval [0, θ]. Let Y(n) = max{Y1, Y2, . . . , Yn}. Find the

a. cdf of Y(n) .
b. pdf of Y(n) .
c. mean and variance of Y(n) . (d) pdf of second the order statistic (i.e., the pdf for Y(2)). 2.

Respuesta :

Answer:

a) [tex] F(y) = 0, y <0[/tex]

[tex] F(y) = \frac{y}{\theta} , 0 \leq y \leq \theta[/tex]

[tex] F(y)= 1, y>1[/tex]

b) [tex] f_{Y_{(n)}} = \frac{d}{dy} (\frac{y}{\theta})^n = n \frac{y^{n-1}}{\theta^n}, 0 \leq y \leq \theta[/tex]

[tex] f_{Y_{(n)}} =0[/tex] for other case

c) [tex]E(Y_{(n)}) = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1}= \theta [\frac{n}{n+1}][/tex]

[tex] Var(Y_{(n)}) =\theta^2 [\frac{n}{(n+1)(n+2)}][/tex]

Step-by-step explanation:

We have a sample of [tex] Y_1, Y_2,...,Y_n[/tex] iid uniform on the interval [tex] [0,\theta][/tex] and we want to find the cumulative distribution function.

Part a

For this case we can define the CDF for [tex] Y_i[/tex] , [tex] i =1,2.,,,n[/tex] like this:

[tex] F(y) = 0, y <0[/tex]

[tex] F(y) = \frac{y}{\theta} , 0 \leq y \leq \theta[/tex]

[tex] F(y)= 1, y>1[/tex]

Part b

For this case we know that:

[tex] F_{Y_{(n)}} (y) = P(Y_{(n)} \leq y) = P(Y_1 \leq y,....,Y_n \leq y)[/tex]

And since are independent we have:

[tex] F_{Y_{(n)}} (y) = P(Y_1 \leq y) * ....P(Y_n \leq y) = (\frac{y}{\theta})^n [/tex]

And then we can find the density function calculating the derivate from the last expression and we got:

[tex] f_{Y_{(n)}} = \frac{d}{dy} (\frac{y}{\theta})^n = n \frac{y^{n-1}}{\theta^n}, 0 \leq y \leq \theta[/tex]

[tex] f_{Y_{(n)}} =0[/tex] for other case

Part c

For this case we can find the mean with the following integral:

[tex]E(Y_{(n)}) = \frac{n}{\theta^n} \int_{0}^{\theta} y y^{n-1} dy[/tex]

[tex]E(Y_{(n)}) = \frac{n}{\theta^n} \int_{0}^{\theta} y^n dy[/tex]

[tex]E(Y_{(n)}) = \frac{n}{\theta^n} \frac{y^{n+1}}{n+1} \Big|_0^{\theta}[/tex]

And after evaluate we got:

[tex]E(Y_{(n)}) = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1}= \theta [\frac{n}{n+1}][/tex]

For the variance first we need to find the second moment like this:

[tex]E(Y^2_{(n)}) = \frac{n}{\theta^n} \int_{0}^{\theta} y^2 y^{n-1} dy[/tex]

[tex]E(Y^2_{(n)}) = \frac{n}{\theta^n} \int_{0}^{\theta} y^{n+1} dy[/tex]

[tex]E(Y^2_{(n)}) = \frac{n}{\theta^n} \frac{y^{n+2}}{n+2} \Big|_0^{\theta}[/tex]

And after evaluate we got:

[tex]E(Y^2_{(n)}) = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2}= \theta^2 [\frac{n}{n+2}][/tex]

And the variance is given by:

[tex] Var(Y_{(n)}) = E(Y^2_{(n)}) - [E(Y_{(n)})]^2[/tex]

And if we replace we got:

[tex] Var(Y_{(n)}) =\theta^2 [\frac{n}{n+2}] -\theta^2 [\frac{n}{n+1}]^2 [/tex]

[tex] Var(Y_{(n)}) =\theta^2 [\frac{n}{n+2} -(\frac{n}{n+1})^2][/tex]

And after do some algebra we got:

[tex] Var(Y_{(n)}) =\theta^2 [\frac{n}{(n+1)(n+2)}][/tex]