Answer:
[tex]\tau=1.28968\times 10^{-8}\ s[/tex] is the electron relaxation time
[tex]l=9.6726\times 10^{-4}\ m[/tex] is the mean free path
Explanation:
Given:
From the Drude's model we have:
[tex]\tau=\frac{m}{\rho.n.q^2}[/tex]
where:
[tex]\tau=[/tex] electron relaxation time
[tex]m=[/tex] mass of a charge
[tex]q=[/tex] magnitude of a charge
Putting respective values for electron:
[tex]\tau=\frac{9.1\times 10^{-31}}{2.45\times 10^{-8}\times 18\times 10^{22}\times (1.6\times 10^{-19})^2}[/tex]
[tex]\tau=8.0605\times 10^{-9}\ s[/tex]
Mean free path is given as:
[tex]l=v_a.\tau[/tex]
where:
[tex]l=[/tex] mean free path
[tex]v_a=[/tex] average velocity of electrons
[tex]v_a=120000\ m.s^{-1}[/tex]
So,
[tex]l=120000\times 8.0605\times 10^{-9}[/tex]
[tex]l=9.6726\times 10^{-4}\ m[/tex]