Consider Al at room temperature. Its electron density is n = 18 x 1022 cm-3 and its electrical resistivity is rho = 2.45 μΩ-cm. Find its electron relaxation time τ and electron mean free path in the Drude model.

Respuesta :

Answer:

[tex]\tau=1.28968\times 10^{-8}\ s[/tex] is the electron relaxation time

[tex]l=9.6726\times 10^{-4}\ m[/tex] is the mean free path

Explanation:

Given:

  • electron density of aluminium at room temperature, [tex]n=18\times 10^{22}\ cm^{-3}[/tex]
  • resistivity of aluminium, [tex]\rho=2.45\times 10^{-8}\ \Omega.m[/tex]

From the Drude's model we have:

[tex]\tau=\frac{m}{\rho.n.q^2}[/tex]

where:

[tex]\tau=[/tex] electron relaxation time

[tex]m=[/tex] mass of a charge

[tex]q=[/tex] magnitude of a charge

Putting respective values for electron:

[tex]\tau=\frac{9.1\times 10^{-31}}{2.45\times 10^{-8}\times 18\times 10^{22}\times (1.6\times 10^{-19})^2}[/tex]

[tex]\tau=8.0605\times 10^{-9}\ s[/tex]

Mean free path is given as:

[tex]l=v_a.\tau[/tex]

where:

[tex]l=[/tex] mean free path

[tex]v_a=[/tex] average velocity of electrons

  • Now we have the the general value of average velocity of electrons at room temperature:

[tex]v_a=120000\ m.s^{-1}[/tex]

So,

[tex]l=120000\times 8.0605\times 10^{-9}[/tex]

[tex]l=9.6726\times 10^{-4}\ m[/tex]