Answer:
Explanation:
Given
Position vector Of object A is given by
[tex]\vec{r_a}=3t\hat{i}+t^2\hat{j}[/tex]
Position vector of object B is given by
[tex]\vec{r_b}=4t\hat{i}-t^2\hat{j}[/tex]
Position vector of A w.r.t to B
[tex]\vec{r_{ab}}=(3t-4t)\hat{i}+(t^2+t^2)\hat{j}[/tex]
Distance between them
[tex]|\vec{r_{ab}}|=\sqrt{(-t)^2+(2t^2)^2}[/tex]
For t=1
[tex]|\vec{r_{ab}}|=\sqrt{(-1)^2+(2\cdot 1^2)^2}[/tex]
[tex]|\vec{r_{ab}}|=\sqrt{1+4}=\sqrt{5}\ m[/tex]
t=2
[tex]|\vec{r_{ab}}|=\sqrt{(-2)^2+(2\cdot 2^2)^2}[/tex]
[tex]|\vec{r_{ab}}|=\sqrt{68}[/tex]
[tex]|\vec{r_{ab}}|=8.24\ m[/tex]