Object A has a position as a function of time given by A(t) = (3.00 m/s)t + (1.00 m/s2)t2. Object B has a position as a function of time given by B(t) = (4.00 m/s)t + (-1.00 m/s2)t2. All quantities are SI units. What is the distance between object A and object B at time?

Respuesta :

Answer:

Explanation:

Given

Position vector Of object A is given by

[tex]\vec{r_a}=3t\hat{i}+t^2\hat{j}[/tex]

Position vector of object B is given by

[tex]\vec{r_b}=4t\hat{i}-t^2\hat{j}[/tex]

Position vector of A w.r.t to B

[tex]\vec{r_{ab}}=(3t-4t)\hat{i}+(t^2+t^2)\hat{j}[/tex]

Distance between them

[tex]|\vec{r_{ab}}|=\sqrt{(-t)^2+(2t^2)^2}[/tex]

For t=1

[tex]|\vec{r_{ab}}|=\sqrt{(-1)^2+(2\cdot 1^2)^2}[/tex]

[tex]|\vec{r_{ab}}|=\sqrt{1+4}=\sqrt{5}\ m[/tex]

t=2

[tex]|\vec{r_{ab}}|=\sqrt{(-2)^2+(2\cdot 2^2)^2}[/tex]

[tex]|\vec{r_{ab}}|=\sqrt{68}[/tex]

[tex]|\vec{r_{ab}}|=8.24\ m[/tex]