i38nayy
contestada

What is the quotient?

StartFraction t + 3 Over t + 4 EndFraction divided by (t squared + 7 t + 12)

Respuesta :

The quotient is:

[tex]\frac{1}{(t+4)^2} \text{ or } \frac{1}{t^2+8t+16}[/tex]

Solution:

Given expression is:

[tex]\frac{t+3}{\frac{t+4}{t^{2}+7t+12}}[/tex]

We have to find the quotient

From given,

[tex]\frac{t+3}{\frac{t+4}{t^{2}+7t+12}} = \frac{t+3}{t+4} \times \frac{1}{(t^2+7t+12)} ------ eqn 1[/tex]

[tex]Let\ us\ factor\ (t^2+7t+12)[/tex]

Split the middle term

[tex]t^2+7t+12 = t^2 + 3t+4t+12[/tex]

Group the terms

[tex](t^2+3t) + (4t+12)[/tex]

Take the common factor out

[tex]t(t+3)+4(t+3)[/tex]

Again take (t+3) as common factor

[tex](t+3)(t+4)[/tex]

Substitute in eqn 1

[tex]\frac{t+3}{\frac{t+4}{t^{2}+7t+12}} = \frac{t+3}{t+4} \times \frac{1}{(t+3)(t+4)}[/tex]

Cancel the common factors

[tex]\frac{t+3}{\frac{t+4}{t^{2}+7t+12}} = \frac{1}{(t+4)^2}[/tex]

Therefore, quotient is:

[tex]\frac{t+3}{\frac{t+4}{t^{2}+7t+12}} = \frac{1}{(t+4)^2} = \frac{1}{t^2+8t+16}[/tex]

The quotient of the given expression is [tex]\rm 1/(t+4)^2[/tex] and this can be determined by using the arithmetic operations.

Given :

Expression  --  [tex]\rm \dfrac{t+3}{\dfrac{t+4}{t^2+7t+12}}[/tex]

The following steps can be used in order to evaluate the given expression:

Step 1 - The arithmetic operations can be used in order to evaluate the given expression.

Step 2 - Write the given expression.

[tex]\rm \dfrac{t+3}{\dfrac{t+4}{t^2+7t+12}}[/tex]

Step 3 - Now, factorize the above expression.

[tex]\rm \dfrac{t+3}{\dfrac{t+4}{t^2+4t+3t+12}}[/tex]

[tex]\rm \dfrac{t+3}{\dfrac{t+4}{t(t+4)+3(t+4)}}[/tex]

[tex]\rm \dfrac{t+3}{\dfrac{t+4}{(t+4)(t+3)}}[/tex]

Step 4 - Simplify the above expression.

[tex]\rm \dfrac{1}{(t + 4)^2}[/tex]

For more information, refer to the link given below:

https://brainly.com/question/6810544