Answer:
[tex]f_1=1011.76Hz\\f_2=2023.53Hz\\f_3=3035.29Hz[/tex]
Explanation:
Standing waves are not propagation waves but the different modes of vibration of a string, a membrane, etc. They are waves that result from the superposition of propagation waves that maintain a constant interference giving a new wave pattern. The frequency that a wave must have to give a stable standing wave is:
[tex]f_n=\frac{nv}{2L}[/tex]
Where:
[tex]L=Length\hspace{3}of\hspace{3}the\hspace{3}string \\v=Speed\hspace{3}of\hspace{3}propagation\hspace{3}of\hspace{3}the\hspace{3}wave\\n=Nth\hspace{3}harmonic[/tex]
Using this, we can estimate the first three standing-wave frequencies:
(Remember to convert cm to m)
[tex]17cm*\frac{1m}{100cm} =0.17m[/tex]
[tex]f_1=\frac{1*344}{2*0.17} \approx1011.76Hz[/tex]
[tex]f_2=\frac{2*344}{2*0.17} \approx2023.53Hz[/tex]
[tex]f_3=\frac{3*344}{2*0.17} \approx3035.29Hz[/tex]