2.3.12 Assume lim f(x)-6 and lim g(x)-9.Compute the following limit and state the limit laws used to justify the computation x-+3 lim Vf(x)g(x)+10 x-+3 m Vrx)g)+10(Simplify your answer.) x-+3

Respuesta :

Answer:

[tex]\lim_{x \to 3} \sqrt[3]{f(x)g(x)+10}=4[/tex]

Step-by-step explanation:

We know that:

[tex]\lim_{x \to 3}f(x)=6[/tex]

[tex]\lim_{x \to 3}g(x)=9[/tex]

To find  [tex]\lim_{x \to 3} \sqrt[3]{f(x)g(x)+10}[/tex] you must:

Step 1: Use the following definition [tex]\sqrt[n]{x}={{x}^{{\frac{1}{n}}}}[/tex]

[tex]\lim_{x \to 3} \sqrt[3]{f(x)g(x)+10}=\\\\\lim_{x \to 3}\:(f(x)g(x)+10)^{\frac{1}{3} }[/tex]

Step 2: From the Limit Laws use the Power law [tex]\lim_{x \to a} (f(x))^n=( \lim_{x \to a} f(x))^n[/tex]

[tex](\lim_{x \to 3}(f(x)g(x)+10))^{\frac{1}{3}}[/tex]

Step 3: From the Limit Laws use the Addition Law [tex]\lim_{x \to a} f(x)+g(x)=\lim_{x \to a} f(x)+\lim_{x \to a} g(x)[/tex]

[tex](\lim_{x \to 3}f(x)g(x)+\lim_{x \to 3}10)^{\frac{1}{3}}[/tex]

Step 4: From the Limit Laws use the Multiplication Law [tex]\lim_{x \to a} f(x)\cdot g(x)=\lim_{x \to a} f(x)\cdot \lim_{x \to a} g(x)[/tex]

[tex](\lim_{x \to 3}f(x)\cdot \lim_{x \to 3}g(x)+\lim_{x \to 3}10)^{\frac{1}{3}}[/tex]

Step 5: Evaluate the limit

[tex](6\cdot 9+\lim_{x \to 3}10)^{\frac{1}{3}}\\\left(6\cdot \:9+10\right)^{\frac{1}{3}}\\64^{\frac{1}{3}}\\\left(4^3\right)^{\frac{1}{3}}\\4[/tex]