Respuesta :
Answer:
a. Δ[tex]H^0_{rxn} = -108.0\frac{kJ}{mol}[/tex]
b. 320.76° C
Explanation:
a.)
we can solve this type of question (i.e calculate Δ[tex]H^0_{rxn}[/tex] , for the gas-phase reaction ) using the Hess's Law.
Δ[tex]H^0_{rxn}[/tex] = [tex]E_{product} deltaH^0_{t}-E_{reactant} deltaH^0_{t}[/tex]
Given from the question, the table below shows the corresponding Δ[tex]H^0_{t}(kJ/mol)[/tex] for each compound.
Compound [tex]H^0_{t}(kJ/mol)[/tex]
Liquid EO -77.4
[tex]CH_4_(g_)[/tex] -74.9
[tex]CO_(g_)[/tex] -110.5
If we incorporate our data into the above previous equation; we have:
Δ[tex]H^0_{rxn}[/tex] = (-110.5 kJ/mol + (-74.9 kJ/mol) ) - (-77.4 kJ/mol)
= [tex]-108.0 \frac{kJ}{mol}[/tex]
b.)
We are to find the final temperature if the average specific heat capacity of the products is 2.5 J/g°C
Given that:
the specific heat capacity (c) = 2.5 J/g°C
[tex]T_{initial}[/tex] = 93.0°C &
the enthalpy of vaporization (Δ[tex]H^0_{vap}[/tex]) = 569.4 J/g
If, we recall; we will remember that; Specific Heat Capacity is the amount of heat needed to raise the temperature of one gram of a substance by one kelvin.
∴ the specific heat capacity (c) is given as = [tex]\frac{Heat(q)}{mass*changeintemperature(T_{initial}-T_{final})}[/tex]
Let's not forget as well, that Δ[tex]H^0_{vap}[/tex] = [tex]\frac{q}{mass}[/tex]
If we substitute Δ[tex]H^0_{vap}[/tex] for [tex]\frac{q}{mass}[/tex] in the above equation, we have;
specific heat capacity (c) = [tex]\frac{deltaH^0_{vap}}{T_{final}-T_{initial}}[/tex]
Making ([tex]T_{final}- T_{initial}[/tex]) the subject of the formula; we have:
[tex]T_{final}- T_{initial}[/tex] = [tex]\frac{delat H^0_{vap}}{specificheat capacity}[/tex]
[tex](T_{final}-93.0^0C)=\frac{569.4J/g}{2.5J/g^0C}[/tex]
[tex]T_{final}=\frac{569.4J/g}{2.5J/g^0C}+93.0^0C[/tex]
= 227.76°C +93.0°C
= 320.76°C
∴ we can thereby conclude that the final temperature = 320.76°C