Based on experimental observations, the acceleration of a particle is defined by the relationa = -( 0.1 + sin(x/b) ),where a and x are expressed in m/s^2 and meters, respectively. Knowing that b = 0.8 m and that v = 1 m/s when x = 0, determine (a) the velocity of the particle when x = -1 m, (b) the position where the velocity is maximum, (c) the maximum velocity.

Respuesta :

Answer:

a) v = +/- 0.323 m/s

b) x = -0.080134 m

c) v = +/- 1.004 m/s

Explanation:

Given:

                             a = - (0.1 + sin(x/b))

b = 0.8

v = 1 m/s @ x = 0

Find:

(a) the velocity of the particle when x = -1 m

(b) the position where the velocity is maximum

(c) the maximum velocity.

Solution:

- We will compute the velocity by integrating a by dt.

                           a = v*dv / dx =  - (0.1 + sin(x/0.8))

- Separate variables:

                           v*dv = - (0.1 + sin(x/0.8)) . dx

-Integrate from v = 1 m/s @ x = 0:

                          0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5

                          0.5v^2 =  0.8cos(x/0.8) - 0.1x - 0.3

- Evaluate @ x = -1

                          0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3

                          v = sqrt (0.104516)

                          v = +/- 0.323 m/s

- v = v_max when a = 0:

                           -0.1 = sin(x/0.8)

                             x = -0.8*0.1002

                             x = -0.080134 m

- Hence,

                            v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134

                            v = sqrt (0.504)

                            v = +/- 1.004 m/s