The pressure P of a gas varies directly with the temperature T and inversely with the volume V. A certain gas has a volume of 6 liters (L), a temperature of 400 Kelvins (K), and a pressure of 2.4 atmospheres (atm). If the gas is expanded to a volume of 15 L and is heated to 650 K, what will the new pressure be?

Respuesta :

Answer:

The value of new pressure will be 1.56 atm.

Explanation:

Using combined gas law :

The combined gas equation is,

[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]

where,

[tex]P_1[/tex] = initial pressure of gas = 2.4 atm

[tex]P_2[/tex] = final pressure of gas = ?

[tex]V_1[/tex] = initial volume of gas = [tex]6 L[/tex]

[tex]V_2[/tex] = final volume of gas =  15 L

[tex]T_1[/tex] = initial temperature of gas = [tex]400 K[/tex]

[tex]T_2[/tex] = final temperature of gas = [tex]650 K[/tex]

Now put all the given values in the above equation, we get:

[tex]\frac{2.4 atm \times 6 L}{400 K}=\frac{P_2\times 15 L}{650 K}[/tex]

[tex]P_2=\frac{2.4 atm \times 6 L\times 650 K}{400 K\times 15 L}[/tex]

[tex]P_2=1.56 atm[/tex]

The value of new pressure will be 1.56 atm.