Answer:
[tex]K.E=80.6388J[/tex]
Explanation:
Given data
Mass m=5 kg
Moment of Inertia I=0.0648 kg.m²
Radius r=0.18 m
Linear Speed v=4.8 m/s
To find
Total Kinetic Energy K.E
Solution
The total kinetic energy K.E can be found as below
[tex]K.E=(1/2)Iw^{2}+(1/2)mv^{2}\\[/tex]
First we need to find the angular speed ω
So
[tex]w=(v/r)\\w=(4.8/0.18)\\w=26.66rad/s[/tex]
Substitute the angular speed and given values to find total kinetic energy
So
[tex]K.E=(1/2)Iw^{2}+(1/2)mv^{2}\\K.E=(1/2)(0.0648kg.m^{2} )(26.666rad/s)^{2}+(1/2)(5kg)(4.8m/s)^{2}\\K.E=80.6388J[/tex]