Data were collected on the amount spent by 64 customers for lunch at a major Houston restaurant. These data are contained in the WEBfile named Houston. Based upon past studies the population standard deviation is known with = $6.Click on the webfile logo to reference the data.Round your answers to two decimal places.a. At 99% confidence, what is the margin of error?b. Develop a 99% confidence interval estimate of the mean amount spent for lunch.____ to ____Amount20.5014.6323.7729.9629.4932.709.2020.8928.8715.7818.1612.1611.2216.4317.669.5918.8919.8823.1120.1120.3420.0830.3621.7921.1819.2234.1327.4936.5518.3732.2712.6325.5327.7133.8121.7919.1626.3520.0126.8513.6317.2213.1720.1222.1122.4720.3635.4711.8517.886.8330.9914.6218.3826.8525.1027.5525.8714.3715.6126.4624.2416.6620.85

Respuesta :

Answer:

attached below

Step-by-step explanation:

Ver imagen beingteenowfmao

The 90% CI  by using normal dist is "[tex]19.585 < \mu < 23.455[/tex]". A complete solution is below.

According to the table,

The sample mean will be:

  • [tex]\bar{x} = \frac{\Sigma (x)}{n}[/tex]

           [tex]= \frac{1377.28}{64}[/tex]

           [tex]= 21.52[/tex]

Standard deviation,

  • [tex]\sigma = 6[/tex]

Sample size,

  • [tex]n = 64[/tex]

Significance level,

  • [tex]\alpha = 1-CI[/tex]

           [tex]= 1-0.99[/tex]

           [tex]= 0.01[/tex]  

Critical value,

  • [tex]z_{\frac{\alpha}{2} } = z_{0.005}[/tex]

             [tex]= 2.58[/tex]

Now,

The margin of error will be:

→ [tex]E = z_{\frac{\alpha}{2} }\times \frac{\sigma}{\sqrt{n} }[/tex]

By substituting the values, we get

       [tex]= 2.58\times \frac{6}{\sqrt{64} }[/tex]

       [tex]= 2.58\times \frac{6}{8}[/tex]

       [tex]= 1.935[/tex]

Limits will be:

Lower = [tex]\bar{x}-E[/tex]

              = [tex]21.52-1.935[/tex]

              = [tex]19.585[/tex]

Upper = [tex]\bar{x} +E[/tex]

              = [tex]21.52+1.935[/tex]

              = [tex]23.455[/tex]

hence,

The 99% CI is:

= [tex]\bar{x} \pm E[/tex]

= [tex]21.52 \pm 1.935[/tex]

= [tex](19.585, 23.455)[/tex]

Thus the above answer is correct.

Learn more about margin of error here:

https://brainly.com/question/23897124