Respuesta :
Answer:
a) [tex] t = -\frac{ln(2)}{k}[/tex]
b) See the proof below
[tex] A(t) = A_o 2^{-\frac{t}{T}}[/tex]
c) [tex] t = 3T \frac{ln(2)}{ln(2)}= 3T[/tex]
Explanation:
Part a
For this case we have the following differential equation:
[tex] \frac{dA}{dt}= kA[/tex]
With the initial condition [tex] A(0) = A_o [/tex]
We can rewrite the differential equation like this:
[tex] \frac{dA}{A} =k dt[/tex]
And if we integrate both sides we got:
[tex] ln |A|= kt + c_1 [/tex]
Where [tex]c_1[/tex] is a constant. If we apply exponential for both sides we got:
[tex] A = e^{kt} e^c = C e^{kt}[/tex]
Using the initial condition [tex] A(0) = A_o[/tex] we got:
[tex] A_o = C[/tex]
So then our solution for the differential equation is given by:
[tex] A(t) = A_o e^{kt}[/tex]
For the half life we know that we need to find the value of t for where we have [tex] A(t) = \frac{1}{2} A_o [/tex] if we use this condition we have:
[tex] \frac{1}{2} A_o = A_o e^{kt}[/tex]
[tex] \frac{1}{2} = e^{kt}[/tex]
Applying natural log we have this:
[tex] ln (\frac{1}{2}) = kt[/tex]
And then the value of t would be:
[tex] t = \frac{ln (1/2)}{k}[/tex]
And using the fact that [tex] ln(1/2) = -ln(2) [/tex] we have this:
[tex] t = -\frac{ln(2)}{k}[/tex]
Part b
For this case we need to show that the solution on part a can be written as:
[tex] A(t) = A_o 2^{-t/T}[/tex]
For this case we have the following model:
[tex] A(t) = A_o e^{kt}[/tex]
If we replace the value of k obtained from part a we got:
[tex] k = -\frac{ln(2)}{T}[/tex]
[tex] A(t) = A_o e^{-\frac{ln(2)}{T} t}[/tex]
And we can rewrite this expression like this:
[tex] A(t) = A_o e^{ln(2) (-\frac{t}{T})}[/tex]
And we can cancel the exponential with the natural log and we have this:
[tex] A(t) = A_o 2^{-\frac{t}{T}}[/tex]
Part c
For this case we want to find the value of t when we have remaining [tex] \frac{A_o}{8}[/tex]
So we can use the following equation:
[tex] \frac{A_o}{8}= A_o 2^{-\frac{t}{T}}[/tex]
Simplifying we got:
[tex] \frac{1}{8} = 2^{-\frac{t}{T}}[/tex]
We can apply natural log on both sides and we got:
[tex] ln(\frac{1}{8}) = -\frac{t}{T} ln(2)[/tex]
And if we solve for t we got:
[tex] t = T \frac{ln(8)}{ln(2)}[/tex]
We can rewrite this expression like this:
[tex] t = T \frac{ln(2^3)}{ln(2)}[/tex]
Using properties of natural logs we got:
[tex] t = 3T \frac{ln(2)}{ln(2)}= 3T[/tex]