Answer:
The expected freezing point of a solution of anthracene in cyclohexane is -0.585°C.
Explanation:
[tex]\Delta T_f=T-T_f[/tex]
[tex]\Delta T_f=i\times K_f\times m[/tex]
where,
[tex]T_f[/tex] = Freezing point of solution
T = Freezing point of pure solvent
[tex]\Delta T_f[/tex] =depression in freezing point =
i = van't Hoff factor
[tex]K_f[/tex] = freezing point constant of solvent
m = molality
We have :
i = 1 ( non electrolyte)
Freezing point constant of cyclohexane = [tex]K_f[/tex] =1.86°C/m ,
Mass of solvent (cyclohexane) = 66.3 g = 0.0663 kg( 1 g = 0.001 kg)
Mass of solute (anthracene) = 4.16 g
Moles of anthracene = [tex]\frac{4.16 g}{178 g/mol}=0.02337 mol[/tex]
[tex]Molality(m)=\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}[/tex]
[tex]m = \frac{0.02337 mol}{0.0663 kg}=0.3525 m[/tex]
[tex]\Delta T_f=1\times 20.1^oC/m\times 0.3525 m[/tex]
[tex]\Delta T_f=7.085^oC[/tex]
Freezing point of pure cyclohexane = T = 6.5°C
Freezing point of solution = [tex]T_f[/tex]
[tex]\Delta T_f=T-T_f[/tex]
[tex]T_f=T-\Delta T_f=6.5^oC-7.085^oC=-0.585 ^oC[/tex]
The expected freezing point of a solution of anthracene in cyclohexane is -0.585°C.