Respuesta :
Option c: x=6 is a true solution and x=-6 is an extraneous solution.
Explanation:
The equation is [tex]2 \log _{6} x=2[/tex]
Dividing both sides of the equation by 2, we get,
[tex]\frac{2 \log _{6}(x)}{2}=\frac{2}{2}[/tex]
Simplifying,
[tex]\log _{6}(x)=1[/tex]
Since, we know by the logarithmic definition, if [tex]\log _{a}(b)=c[/tex], then [tex]b=a^{c}[/tex]
Using this definition, we have,
[tex]x=6^{1}[/tex]
Hence, [tex]x=6[/tex]
Now, let us verify if [tex]x=6[/tex] is the solution.
Substitute [tex]x=6[/tex] in the equation [tex]2 \log _{6} x=2[/tex] to see whether both sides of the equation are true.
We have,
[tex]2 \log _{6}(6)[/tex]
Using the log rule, [tex]\log _{a}(a)=1[/tex]
We have,
[tex]2*1=2[/tex]
Hence, both sides of the equation are equal.
Thus, [tex]x=6[/tex] is the true solution.