A metal begins to emit electrons, as measured in an apparatus similar to the one Hertz used, when exposed to light at a wavelength of 342 nm (ultraviolet). What is the work function of this metal?

Respuesta :

Answer : The work function of this metal is, [tex]5.81\times 10^{-19}J[/tex]

Explanation : Given,

Wavelength of light = [tex]342nm=342\times 10^{-9}m[/tex]

Formula used :

[tex]E=h\nu_o=\frac{hc}{\lambda}[/tex]

where,

E = work function of metal

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

[tex]\nu_o[/tex] = threshold frequency

[tex]\lambda[/tex] = wavelength of light

c = speed of light = [tex]3\times 10^8m/s[/tex]

Now put all the given values in this formula, we get the value of work function of this metal.

[tex]E=\frac{hc}{\lambda}[/tex]

[tex]E=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^8m/s)}{(342\times 10^{-9}m)}[/tex]

[tex]E=5.81\times 10^{-19}J[/tex]

Therefore, the work function of this metal is, [tex]5.81\times 10^{-19}J[/tex]