Answer:
The unit cell's edge length is [tex]5.06\times 10^{-8} m[/tex]
Explanation:
Number of atom in BCC unit cell = Z = 2
Density of barium metal= [tex]3.51g/cm^3[/tex]
Edge length of cubic unit cell= a = ?
Atomic mass of Ba(M) = 137.33 g/mol
Formula used :
[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]
where,
= density
Z = number of atom in unit cell
M = atomic mass
[tex](N_{A})[/tex] = Avogadro's number
a = edge length of unit cell
On substituting all the given values , we will get the value of 'a'.
[tex]3.51 g/cm3=\frac{2\times 137.33g/mol}{6.022\times 10^{23} mol^{-1}\times (a)^{3}}[/tex]
[tex]a = 5.06\times 10^{-8} m[/tex]
The unit cell's edge length is [tex]5.06\times 10^{-8} m[/tex]