Respuesta :

Question:

The image of the question is attached below.

Answer:

x = 40

Solution:

Given ΔVDG [tex]\sim[/tex] ΔVNG.

DG = 207, NQ = 138, GQ = 60, QV = x

In two triangles are similar, then the measures of the corresponding sides are in proportional to each other.

[tex]$\Rightarrow\frac{DG}{NQ}=\frac{GQ}{QV}[/tex]

[tex]$ \Rightarrow\frac{207}{138}=\frac{60}{x}[/tex]

Do cross multiplication, we get

[tex]$ \Rightarrow{207\times x}=138\times60[/tex]

[tex]$ \Rightarrow{207\times x}=8280[/tex]

[tex]$ \Rightarrow{207x}=8280[/tex]

Divide by 207 on both sides of the equation, we get

[tex]$ \Rightarrow\frac{{207x}}{207} =\frac{8280}{207}[/tex]

[tex]$ \Rightarrow x =\frac{8280}{207}[/tex]

x = 40

⇒ QV = 40

Hence the value of x is 40.

Ver imagen shilpa85475

Answer:

its 8

Step-by-step explanation:

Ver imagen katiemcgeein