Respuesta :

Answer:

l hope it will help you thanks

Ver imagen apurvkulkarni

Answer:

[tex]1+\tan^2\theta = \frac{(m+n)^2}{4mn}[/tex]

Step-by-step explanation:

We will use the identity:

                                      [tex]1+\tan^2\theta = \sec^2\theta[/tex]

Also,

                                          [tex]\sec^2\theta = \dfrac{1}{\cos^2\theta}[/tex]

Therefore,

                                      [tex]1+\tan^2\theta = \dfrac{1}{\cos^2\theta}[/tex]

Now we will use the identitiy:

                                      [tex]\sin ^2 \theta + \cos ^2 \theta = 1[/tex]

Therefore we obtain:

                                      [tex]\cos ^2 \theta = 1-\sin^2 \theta[/tex]

Inserting \sin ∅ =  (m-n)/(m+n) into the above equation we obtain:

                                     [tex]\cos^2\theta = 1 - \dfrac{(m-n)^2}{(m+n)^2}[/tex]

Editing that expression:

       [tex]\cos ^2 \theta = \dfrac{(m+n)^2-(m-n)^2}{(m+n)^2} = \dfrac{m^2+2mn+n^2 - (m^2-2mn+n^2)}{(m+n)^2}[/tex]

               [tex]= \dfrac{m^2+2mn+n^2 - m^2+2mn-n^2}{(m+n)^2}=\dfrac{4mn}{(m+n)^2}[/tex]

Now we have the expression for [tex]\cos^2\theta[/tex], and since   [tex]1+\tan^2\theta = \frac{1}{\cos^2\theta}[/tex]  

we need  [tex]\frac{1}{\cos^2\theta}[/tex].

Therefore:

                                       [tex]1+\tan^2\theta = \frac{(m+n)^2}{4mn}[/tex]