The area of a rectangle is 5x^3+19^2+6-18 with length x + 3. Using synthetic division, what is the width of the rectangle?

Respuesta :

Answer:

The width of the given rectangle is [tex]5x^2+4x-6[/tex] units

Therefore [tex]w=5x^2+4x-6[/tex] units

Step-by-step explanation:

GIven that the area of the rectangle is [tex]5x^3+19x^2+6x-18[/tex] and length is (x+3)

To find the width of the given rectangle

Area of the rectangle [tex]A=lw[/tex]

[tex]w=\frac{A}{l}[/tex]

[tex]w=\frac{5x^3+19x^2+6x-18}{x+3}[/tex]

Solving the equation by synthetic division

-3_|  5     19      6     -18

       0     -15    -12     18

________________________

       5       4      -6      0

Therefore 5x^2+4x-6=0

Therefore [tex]w=5x^2+4x-6[/tex] units

Therefore the width of the given rectangle is [tex]5x^2+4x-6[/tex] units

Answer:

the answer is A. 5x^2 + 4x - 6

Step-by-step explanation: