Respuesta :
Answer:
The width of the given rectangle is [tex]5x^2+4x-6[/tex] units
Therefore [tex]w=5x^2+4x-6[/tex] units
Step-by-step explanation:
GIven that the area of the rectangle is [tex]5x^3+19x^2+6x-18[/tex] and length is (x+3)
To find the width of the given rectangle
Area of the rectangle [tex]A=lw[/tex]
[tex]w=\frac{A}{l}[/tex]
[tex]w=\frac{5x^3+19x^2+6x-18}{x+3}[/tex]
Solving the equation by synthetic division
-3_| 5 19 6 -18
0 -15 -12 18
________________________
5 4 -6 0
Therefore 5x^2+4x-6=0
Therefore [tex]w=5x^2+4x-6[/tex] units
Therefore the width of the given rectangle is [tex]5x^2+4x-6[/tex] units
Answer:
the answer is A. 5x^2 + 4x - 6
Step-by-step explanation: