Respuesta :

Answer:

The given sequence is geometric sequence

In the given pattern we have next number is [tex]a_5=\frac{1}{4}[/tex]

Step-by-step explanation:

Given numbers are 64,-16,4,-1

To identify the pattern of the given numbers :

Let [tex]a_1=64[/tex], [tex]a_2=-16[/tex] ,[tex]a_3=4[/tex]  and [tex]a_4=-1[/tex]

To find the next number that is [tex]a_5[/tex]

common ratio [tex]r=\frac{a_2}{a_1}[/tex]

[tex]=\frac{-16}{64}[/tex]

[tex]r=-\frac{1}{4}[/tex]

[tex]r=\frac{a_3}{a_2}[/tex]

[tex]=\frac{4}{-16}[/tex]

[tex]r=-\frac{1}{4}[/tex]

Therefore the common ration is [tex]r=-\frac{1}{4}[/tex]

Therefore the given sequence is geometric sequence

The nth term of the geometric sequence is [tex]a_n=a_1r^{n-1}[/tex]

Now find the 5th term so put n=5 , [tex]a_1=64andr=\frac{-1}{4}[/tex] we have

[tex]a_5=64(\frac{-1}{4})^{5-1}[/tex]

[tex]=64(\frac{-1}{4})^{4}[/tex]

[tex]=64(\frac{1}{4})^{4}[/tex]

[tex]=64(\frac{1}{4}\times \frac{1}{4}\times \frac{1}{4}\times \frac{1}{4})[/tex]

[tex]=\frac{1}{4}[/tex]

Therefore [tex]a_5=\frac{1}{4}[/tex]