The first part is 48 and the second part is 36.
Step-by-step explanation:
Let,
The first half = x
The second half = y
According to given statement;
x+y=84 Eqn 1
[tex]\frac{1}{2}x-\frac{1}{3}y=12\ \ \ Eqn\ 2[/tex]
Multiplying Eqn 1 by [tex]\frac{1}{2}[/tex]
[tex]\frac{1}{2}(x+y=84)\\\\\frac{1}{2}x+\frac{1}{2}y=42\ \ \ Eqn\ 3[/tex]
Subtracting Eqn 2 from Eqn 3
[tex](\frac{1}{2}x+\frac{1}{2}y)-(\frac{1}{2}x-\frac{1}{3}y=42-12\\\\\frac{1}{2}x+\frac{1}{2}y-\frac{1}{2}x+\frac{1}{3}y=30\\\\\frac{1}{2}y+\frac{1}{3}y=30\\\\\frac{3y+2y}{6}=30\\\\\frac{5y}{6}=30[/tex]
Multiplying both sides by [tex]\frac{6}{5}[/tex]
[tex]\frac{6}{5}*\frac{5}{6}y=30*\frac{6}{5}\\\\y=\frac{180}{5}\\\\y=36[/tex]
Putting y=36 in Eqn 1
[tex]x+36=84\\x=84-36\\x=48[/tex]
The first part is 48 and the second part is 36.
Keywords: linear equation, elimination method
Learn more about elimination method at:
#LearnwithBrainly