Respuesta :

Answer:

  • [tex]x=14[/tex]
  • [tex]\angle{LMN}=124\textdegree[/tex]

Step-by-step explanation:

To Determine:

Solve for x and find angle LMN.

Fetching Information and Solution Steps:

Considering the angle [tex]\angle{LMN}[/tex]

As MO bisects the angle [tex]\angle{LMN}[/tex] into two equal angle parts. These equal angles are:

[tex]\angle{LMO}=6x-22[/tex]

[tex]\angle{NMO}=2x+34[/tex]

As these angles are equal. i.e.

[tex]\angle{LMO}=\angle{NMO}[/tex]

[tex]6x-22=2x+34[/tex]

[tex]\mathrm{Add\:}22\mathrm{\:to\:both\:sides}[/tex]

[tex]6x-22+22=2x+34+22[/tex]

[tex]6x=2x+56[/tex]

[tex]\mathrm{Subtract\:}2x\mathrm{\:from\:both\:sides}[/tex]

[tex]6x-2x=2x+56-2x[/tex]

[tex]4x=56[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}4[/tex]

[tex]\frac{4x}{4}=\frac{56}{4}[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]x=14[/tex]

Hence, [tex]x=14[/tex]

As  [tex]\angle{LMN}[/tex] was cut into two equal parts [tex]\angle{LMO}[/tex] and [tex]\angle{NMO}[/tex]

So,

[tex]\angle{LMN}[/tex] = [tex]\angle{LMO} + \angle{NMO}[/tex]

            = [tex]6x-22+2x+34[/tex]

            = [tex]8x + 12[/tex]

            = [tex]8(14) + 12[/tex]     ∵ [tex]x=14[/tex]

            = [tex]124\textdegree[/tex]

Therefore, [tex]\angle{LMN}=124\textdegree[/tex]

Keywords: angle bisector, congruent angles

Learn more about angle bisector and congruent angles from brainly.com/question/711370

#learnwithBrainly