Answer: d = [tex]\frac{5}{13}[/tex]
Step-by-step explanation:
The formula for finding distance between a point and a line is given as :
d = [tex]\frac{/Ax_{1}+By_{1}+C/}{\sqrt{(A)^{2}+(B)^{2}}}[/tex]
A = 12
B = 5
C = 6
[tex]x_{1}[/tex] = 0.5
[tex]y_{1}[/tex] = -1.4
Substituting the values into the formula :
d = [tex]\frac{/12(0.5)+5(-1.4)+6/}{\sqrt{(12)^{2}+(5)^{2}}}[/tex]
d = [tex]\frac{/6+(-7)+6/}{\sqrt{144+25}}[/tex]
d = [tex]\frac{5}{\sqrt{169}}[/tex]
d = [tex]\frac{5}{13}[/tex]