Respuesta :
A two digit number can be written like AB or 10*A + B ( for example the number 36 can be written like 3*10 + 6 = 36)
You can write this problem as
10*A + B - (10*B + A) = 18
10*A + B - 10*B - A = 18
9*A - 9*B = 18
9(A - B) = 18
A - B = 2
A and B are digits, that means that both are either 0,1,2,3,4,5,6,7,8 or 9 (except that A cannot be 0 bcs the first digit in a two digit number cannot be 0)
So the combinations are
9 - 7 = 2
8 - 6 = 2
7 - 5 = 2
6 - 4 = 2
5 - 3 = 2
4 - 2 = 2
3 - 1 = 2
2 - 0 = 2
And we have the numbers:
97 ( B is 79)
86 ( B is 68)
75 ( B is 57)
64 ( B is 46)
53 ( B is 35)
42 ( B is 24)
31 ( B is 13)
20 ( B is 2)
Answer:
[tex]\large\boxed{31,\ 42,\ 53,\ 64,\ 75,\ 86,\ 97}[/tex]
Step-by-step explanation:
[tex]a-\text{the digit of tens}\\b-\text{the digit of ones}\\\\10a+b-\text{the number}\\10b+a-\text{the number reversed}\\\\\bold{EQUATION:}\\\\(10a+b)-(10b+a)=18\\\\10a+b-10b-a=18\qquad\text{combine like terms}\\\\(10a-a)+(b-10b)=18\\\\9a-9b=18\qquad\text{divide both sides by 9}\\\\\dfrac{9a}{9}-\dfrac{9b}{9}=\dfrac{18}{9}\\\\a-b=2\to b=a-2\\\\\text{List of all solutions}\\\\a=3,\ b=3-2=1\\a=4,\ b=4-2=2\\a=5,\ b=5-2=3\\a=6,\ b=6-2=4\\a=7,\ b=7-2=5\\a=8,\ b=8-2=6\\a=9,\ b=9-2=7[/tex]