A square corner of 16 square centimeters is removed
from a square paper with an area of 9.x2 square
centimeters
Which expression represents the area of the remaining
paper shape in square centimeters?
(x-7)(x-9)
(3x − 2)(3x – 8)
(3x – 4)(3x + 4)
(9x - 1)(x + 16)

Respuesta :

Option C:

Area of the remaining paper = (3x – 4)(3x + 4) square centimeter

Solution:

Area of the square paper = [tex]9x^2[/tex] sq. cm

Area of the square corner removed = 16 sq. cm

Let us find the area of the remaining paper.

Area of the remaining paper = Area of the square paper – Area of the corner

Area of the remaining = [tex]9x^2-16[/tex]

                                     = [tex](3x)^2-(4)^2[/tex]

Using algebraic formula: [tex]a^2-b^2=(a+b)(a-b)[/tex]

                                     [tex]=(3x-4)(3x+4)[/tex]

Area of the remaining paper = (3x – 4)(3x + 4) square centimeter

Hence (3x – 4)(3x + 4)  represents area of the remaining paper in square centimeters.

Answer:

C

Step-by-step explanation: