Respuesta :

[tex]$3\frac{3}{4}[/tex] number of [tex]$\frac{2}{5}[/tex]s in [tex]$1\frac{1}{2}[/tex].

Solution:

To find how many [tex]\frac{2}{5}[/tex] s are in [tex]1\frac{1}{2}[/tex].

Let us first convert the mixed fraction into improper fraction.

[tex]$1\frac{1}{2}=\frac{(1\times2)+1}{2}[/tex]

    [tex]$=\frac{2+1}{2}[/tex]

[tex]$1\frac{1}{2}=\frac{3}{2}[/tex]

Now, divide [tex]$1\frac{1}{2}[/tex] by [tex]$\frac{2}{5}[/tex].

[tex]$1\frac{1}{2}\div\frac{2}{5} =\frac{3}{2}\div\frac{2}{5}[/tex]

Using fractional rule, [tex]$\frac{a}{b}\div\frac{c}{d}=\frac{a}{b}\times\frac{d}{c}[/tex]

            [tex]$=\frac{3}{2}\times \frac{5}{2}[/tex]

            [tex]$=\frac{3\times 5}{2\times 2}[/tex]

            [tex]$=\frac{15}{4}[/tex]

Again, convert into a mixed fraction,

           [tex]$=3\frac{3}{4}[/tex]

[tex]$1\frac{1}{2}\div\frac{2}{5} =3\frac{3}{4}[/tex]

There are [tex]$3\frac{3}{4}[/tex] number of [tex]$\frac{2}{5}[/tex]s in [tex]$1\frac{1}{2}[/tex].