Respuesta :
Answer:
1.75 atm
Explanation:
Mass is conserved, so the mass flow before the constriction equals the mass flow after the constriction.
m₁ = m₂
ρQ₁ = ρQ₂
Q₁ = Q₂
v₁A₁ = v₂A₂
v₁ πd₁²/4 = v₂ πd₂²/4
v₁ d₁² = v₂ d₂²
Now use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Since h₁ = h₂:
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Writing v₂ in terms of v₁:
P₁ + ½ ρ v₁² = P₂ + ½ ρ (v₁ d₁²/d₂²)²
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₁² (d₁/d₂)⁴
P₁ + ½ ρ v₁² (1 − (d₁/d₂)⁴) = P₂
Plugging in values:
P₂ = 2 atm + ½ (1000 kg/m³) (4.4 m/s)² (1 − (3.3 cm / 2.4 cm)⁴) (1 atm / 1.013×10⁵ Pa)
P₂ = 1.75 atm
Following are the calculation to the pressure:
[tex]\to A_1\ v_1 = A_2\ v_2\\\\[/tex]
[tex]\to 4.4 \times 3.3^2 = 2.4^2 \times v_2\\\\\to v_2= \frac{4.4 \times 3.3^2}{2.4^2}\\\\[/tex]
[tex]= \frac{4.4 \times 10.89}{5.76}\\\\= \frac{47.916}{5.76}\\\\=8.31875\\\\= 8.31\ \frac{m}{s}\\\\[/tex]
Using the bernoulli principle:
[tex]\to P_1 + 0.5\pho v_1^2 = P_2 + 0.5\rho v_2^2\\\\[/tex]
[tex]\to 2 \times 1.01 \times 10^5 + 0.5 \times 1000 \times 4.4^2 = P_2 + 0.5 \times 1000 \times 8.31^2\\\\\to 2.02 \times 10^5 + 0.5 \times 10^3 \times 19.36 = P_2 + 0.5 \times 1000 \times 69.0561\\\\\to 211680 = P_2 + 34528.05\\\\\to P_2= 211680 -34528.05\\\\\to P_2 = -177151.95\\\\\to P_2 = 177151.95\ atm\\\\[/tex]
Learn more:
brainly.com/question/15358899