Respuesta :

Answer:

12-1/2r            =>  (13− 3/ 2 r)−(1−r)

r-13/6             =>  (7r-3/2)-(2/3+6r)

13r+20           =>  (6r+7)+(13+7r)

-12+r               =>  (−8−r)+(2r−4)

The matching simplified solutions are as follows

(6r + 7)+(13 + 7r) → 13r + 20

(13 - [tex]\frac{3}{2} r[/tex]) - (1 - r) → -[tex]\frac{1}{2} r[/tex]+12

(-8-r)+(2r - 4) → r - 12

(7r -[tex]\frac{3}{2}[/tex] ) - ([tex]\frac{2}{3}[/tex]+6r) → r - [tex]\frac{13}{6}[/tex]

let's simplify each expression from the beginning. Therefore,

(6r + 7)+(13 + 7r)

open the brackets

6r + 7 + 13 + 7r

  • 13r + 20

(13 - [tex]\frac{3}{2} r[/tex]) - (1 - r)

13 -  [tex]\frac{3}{2} r[/tex] - 1 + r

  • -[tex]\frac{1}{2} r[/tex]+12

(-8-r)+(2r - 4)

-8 - r + 2r - 4

  • r - 12

(7r -[tex]\frac{3}{2}[/tex] ) - ([tex]\frac{2}{3}[/tex]+6r)

7r -[tex]\frac{3}{2}[/tex] - [tex]\frac{2}{3}[/tex] - 6r

  • r - [tex]\frac{13}{6}[/tex]

read more: https://brainly.com/question/16959958?referrer=searchResults