Step-by-step explanation:
Given bi-quadratic equation is:
[tex] x^4+95x^2 -500=0[/tex]
Substituting [tex] x^2=a, [/tex] given bi-quadratic equation reduces in the form of following quadratic equation:
[tex] a^2 +95a -500=0\\[/tex]
Let us factorize the above quadratic equation:
[tex] a^2 +95a -500=0\\
\therefore\: a^2 +100a -5a-500=0\\
\therefore\: a(a +100) -5(a+100)=0\\
\therefore\: (a +100)(a -5)=0\\
\therefore\: (a +100)=0\:\: or \:\: (a -5)=0\\
\therefore\: a = - 100\:\: or \:\: a = 5\\\\
CASE\: (1)\:\\
When\: a = - 100 \implies x^2 = - 100\\
\therefore x=\pm \sqrt{-100}\\
[/tex]
Since square root of a negative number cannot be found, so:
[tex]x \neq \pm \sqrt{-100}\\
[/tex]
[tex]CASE\: (2)\:\\
When\: a =5 \implies x^2 =5\\
\therefore x=\pm \sqrt{5}\\
[/tex]