OOOO
What are the solutions of the equation x4 + 95x2 - 500 = 0? Use factoring to solve.
x = tv5 and x = +10
x=tin 5 and x = 101
x= INV5 and x = +101
x==N5 and x = +10

Respuesta :

Step-by-step explanation:

Given bi-quadratic equation is:

[tex] x^4+95x^2 -500=0[/tex]

Substituting [tex] x^2=a, [/tex] given bi-quadratic equation reduces in the form of following quadratic equation:

[tex] a^2 +95a -500=0\\[/tex]

Let us factorize the above quadratic equation:

[tex] a^2 +95a -500=0\\

\therefore\: a^2 +100a -5a-500=0\\

\therefore\: a(a +100) -5(a+100)=0\\

\therefore\: (a +100)(a -5)=0\\

\therefore\: (a +100)=0\:\: or \:\: (a -5)=0\\

\therefore\: a = - 100\:\: or \:\: a = 5\\\\

CASE\: (1)\:\\

When\: a = - 100 \implies x^2 = - 100\\

\therefore x=\pm \sqrt{-100}\\

[/tex]

Since square root of a negative number cannot be found, so:

[tex]x \neq \pm \sqrt{-100}\\

[/tex]

[tex]CASE\: (2)\:\\

When\: a =5 \implies x^2 =5\\

\therefore x=\pm \sqrt{5}\\

[/tex]