Answer:
[tex]x=-\frac{41}{55},y=\frac{2}{55},z=-\frac{8}{55}[/tex]
Step-by-step explanation:
[tex]5x-4y-6z=-3...............eq(1)\\\\x-3y+z=-1.....................eq(2)\\\\-3x-6y+7z=1.................eq(3)[/tex]
[tex]eq(1)-5\times eq(2)[/tex]
[tex]5x-4y-6z-5(x-3y+z)=-3-5\times (-1)\\\\11y-11z=2\\\\y-z=\frac{2}{11}...................eq(4)[/tex]
[tex]3\times eq(2)+eq(3)[/tex]
[tex]3(x-3y+z)-3x-6y+7z=3\times (-1)+1\\\\-15y+10z=-2\\\\-y+\frac{2}{3}z=-\frac{2}{15}.........eq(5)[/tex]
[tex]eq(4)+eq(5)[/tex]
[tex]y-z-y+\frac{2}{3}z=\frac{2}{11}-\frac{2}{15}\\\\-\frac{1}{3}z=\frac{8}{165}\\\\z=-\frac{8\times 3}{165}\\\\z=-\frac{8}{55}[/tex]
From [tex]eq(4)[/tex]
[tex]y=z+\frac{2}{11}=-\frac{8}{55}+\frac{2}{11}\\\\y=\frac{2}{55}[/tex]
Substitute the value of [tex]y[/tex] and [tex]z[/tex] in [tex]eq(2)[/tex]
[tex]x-3\times \frac{2}{55}-\frac{8}{55}=-1\\\\x-\frac{14}{55}=-1\\\\x=-1+\frac{14}{55}\\\\x=\frac{41}{55}[/tex]