Answer:
a) ymax = 3088.564 m
b) t = 38.6 s
c) vf = 246.16 m/s (↓)
Explanation:
Given
a) In the first stage
y₀ = 0 m
v₁y = 0 m/s
a₁ = 3.50 m/s²
t₁ = 25 s
we get y as follows
y₁ = y₀ + v₁y*t₁ + 0.5*a₁*t₁²
⇒ y₁ = 0 + 0*25 + 0.5*3.5*25² = 1093.75 m
v₂y = v₁y + a₁*t₁ = 0 m/s + (3.50m/s²)*(25 s) = 87.5 m/s
In the second stage
v₃y = 132.5 m/s
t₂ = 10 s
y₁ = 0 m
v₃y = v₂y + a₂*t₂ ⇒ a₂ = (v₃y - v₂y) / t₂
⇒ a₂ = (132.5 m/s - 87.5 m/s) / 10 s = 4.5 m/s²
we get y as follows
y₂ = y₁ + v₂y*t₂ + 0.5*a₂*t₂²
⇒ y₂ = 0 + 87.5*10 + 0.5*4.5*10² = 1100 m
when the only force acting on the rocket is gravity
y₃ = (v₃y)²/(2*g)
⇒ y₃ = (132.5 m/s)²/(2*9.81 m/s²) = 894.814 m
finally
ymax = y₁ + y₂ + y₃ = 1093.75 m + 1100 m + 894.814 m = 3088.564 m
t₃ = v₃y / g = (132.5 m/s) / (9.81 m/s²) = 13.5 s
b) when y = ymax
y = g*t²/2 ⇒ t₄ = √(2*ymax / g)
⇒ t₄ = √(2*3088.564 m / 9.81 m/s²) = 25.09 s
t = t₃ + t₄ = 13.5 s + 25.09 s = 38.6 s
c) We can use the formula
vf = √(2*g*ymax)
⇒ vf = √(2*9.81 m/s²*3088.564 m) = 246.16 m/s (↓)