Answer:
[tex]\frac{x_{o}}{v_B-V_A} =t[/tex]
Explanation:
Represent the car's position as a function
[tex]x_o=[/tex] "head start"
[tex]x_{A}(t) = x_{o} + v_{A}t\\x_B(t)=v_Bt \\[/tex]
[tex]Remember: v_B>v_A[/tex]
"cathching up means" that [tex]x_A(t)=x_B(t)[/tex]
[tex]x_{o} + v_{A}t =v_Bt\\x_{o} = v_Bt -v_{A}t\\x_{o} = t(v_B-V_A)\\\frac{x_{o}}{v_B-V_A} =t, where \ v_B>v_A[/tex]