Respuesta :

Answer:

[tex]D=2\sqrt{\frac{A}{\pi}}[/tex]

Step-by-step explanation:

we know that

The area of the circle is equal to

[tex]A=\frac{1}{4}\pi D^{2}[/tex]

where

D is the diameter of the circle

Solve for D

That means-----> Isolate the variable D

Multiply both sides by 4 to remove the fraction

[tex]4A=\pi D^{2}[/tex]

Divide both sides by π

[tex]\frac{4A}{\pi}=D^2[/tex]

square root both sides

[tex]\sqrt{\frac{4A}{\pi}}=D[/tex]

Rewrite

[tex]D=\sqrt{\frac{4A}{\pi}}[/tex]

Simplify

[tex]D=2\sqrt{\frac{A}{\pi}}[/tex]

Answer:

[tex]D=2\sqrt{\frac{A}{\pi } }[/tex]

Step-by-step explanation: