Respuesta :
Answer:
[tex]D=2\sqrt{\frac{A}{\pi}}[/tex]
Step-by-step explanation:
we know that
The area of the circle is equal to
[tex]A=\frac{1}{4}\pi D^{2}[/tex]
where
D is the diameter of the circle
Solve for D
That means-----> Isolate the variable D
Multiply both sides by 4 to remove the fraction
[tex]4A=\pi D^{2}[/tex]
Divide both sides by π
[tex]\frac{4A}{\pi}=D^2[/tex]
square root both sides
[tex]\sqrt{\frac{4A}{\pi}}=D[/tex]
Rewrite
[tex]D=\sqrt{\frac{4A}{\pi}}[/tex]
Simplify
[tex]D=2\sqrt{\frac{A}{\pi}}[/tex]
Answer:
[tex]D=2\sqrt{\frac{A}{\pi } }[/tex]
Step-by-step explanation: