Respuesta :
Answer: The concentration of nitrate ions in the mixture is 3.65 M
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex] .....(1)
- For iron (II) nitrate:
Molarity of iron (II) nitrate solution = 1.50 M
Volume of solution = 160. mL = 0.160 L (Conversion factor: 1 L = 1000 mL)
Putting values in equation 1, we get:
[tex]1.50M=\frac{\text{Moles of iron (II) nitrate}}{0.160L}\\\\\text{Moles of iron (II) nitrate}=(1.50mol/L\times 0.160L)=0.24mol[/tex]
1 mole of iron (II) nitrate produces 2 moles of nitrate ions and 1 mole of iron (II) ions
Moles of nitrate ions [tex],n_1=(2\times 0.24)=0.48mol[/tex]
- For calcium nitrate:
Molarity of calcium nitrate solution = 2.40 M
Volume of solution = 90. mL = 0.090 L
Putting values in equation 1, we get:
[tex]2.40M=\frac{\text{Moles of calcium nitrate}}{0.090L}\\\\\text{Moles of calcium nitrate}=(2.40mol/L\times 0.090L)=0.216mol[/tex]
1 mole of calcium nitrate produces 2 moles of nitrate ions and 1 mole of calcium ions
Moles of nitrate ions [tex],n_2=(2\times 0.216)=0.432mol[/tex]
Calculating the concentration of nitrate ions in the mixture by using equation 1:
Total moles of nitrate ions = [0.48 + 0.432] mol = 0.912 moles
Total volume of the solution = [0.160 + 0.090] L = 0.250 L
Putting values in equation 1, we get:
[tex]\text{Molarity of nitrate ions in the mixture}=\frac{0.912mol}{0.250L}\\\\\text{Molarity of nitrate ions in the mixture}=3.65M[/tex]
Hence, the concentration of nitrate ions in the mixture is 3.65 M