Answer: [tex]4y^{2}(2x-9y)^{2}[/tex]
Step-by-step explanation:
We have the following polynomial:
[tex](4xy-18y^{2})^{2}[/tex]
This is a polynomial of the form [tex](a-b)^{2}=a^{2}-2ab+b^{2}[/tex]. Following this rule to expand it, we have:
[tex](4xy)^{2}-2(4xy)(18y^{2})+(18y^{2})^{2}[/tex]
[tex]16x^{2}y^{2}-144xy^{3}+324y^{4}[/tex]
Applying common factor [tex]4y^{2}[/tex]:
[tex]4y^{2}(4x^{2}-36xy+81y^{2})[/tex]
Note the polynomial inside the parenthesis is a perfect square trinomial, which can be factored to[tex](2x-9y)^{2}[/tex]. Hence, the final simplification is:
[tex]4y^{2}(2x-9y)^{2}[/tex]