Suppose you choose at random a real number X from the interval [2, 10].
(a) Find the density function f(x) and the probability of an event E for this experiment, where E is a sub-interval [a, b] of [2, 10].
(b) From (a), find the probability that X > 5, that 5 < X < 7, and that X² − 12X + 35 > 0.

Respuesta :

Answer:

[tex]\mathbf{(a)} P(E) = \frac{1}{8}(b-a)\\ \mathbf{(b)} P(X>5) = \frac{5}{8}, P(5<X<7) = \frac{1}{4} , P(X^2 - 12X + 35>0) = \frac{3}{4}[/tex]

Step-by-step explanation:

[tex]\mathbf{(a)}\\[/tex]

The objective is to find the density function [tex]f(x)[/tex] and the probability of the event E, which is choosing at random from the interval [tex][a,b] \subset [2,10].[/tex]

Let [tex]X[/tex] be a random variable that follows the uniform distribution on the interval [2,10]. Then, its density function is

                               [tex]f_x(x) = \dfrac{1}{10-2} = \dfrac{1}{8}, \quad x \in [2,10][/tex]

and 0 otherwise.

Now, we can find the probability of the event [tex]E[/tex].

         [tex]P(E) = P(a\leq X\leq b) = \int \limits_{a}^{b} f_x(x)\, dx = \int \limits_{a}^{b} \frac{1}{8} \, dx = \frac{1}{8} x \Big|_{a}^{b} = \frac{1}{8} (b-a)[/tex]

[tex]\mathbf{b)}[/tex]

Let's find the probability that [tex]X>5[/tex]. By the definition, we obtain

        [tex]P(X>5) = \int\limits^{10}_{5} f_x(x) \, dx = \int\limits^{10}_{5} \frac{1}{8} \, dx = \frac{1}{8} x \Big|_{5}^{10} = \frac{1}{8} (10 - 5) = \frac{5}{8}[/tex]

The probability that [tex]5<X<7[/tex] is

     [tex]P(5<X<7) = \int\limits^{7}_{5} f_x(x) \, dx = \int\limits^{7}_{5} \frac{1}{8} \, dx = \frac{1}{8} x \Big|_{5}^{7} = \frac{1}{8} (7 - 5) = \frac{2}{8} = \frac{1}{4}[/tex]

To find the probability that [tex]X^2-12X + 35 > 0[/tex], first solve the inequality[tex]x^2-12x+35 > 0[/tex] .

The roots of the quadratic equation [tex]x^2-12x+35 = 0[/tex] are

[tex]x_{1/2} = \frac{12 \pm \sqrt{144- 4 \cdot 35} }{2} = \frac{12 \pm 2 }{2} = 6 \pm 1 \implies x_1 = 6+1 = 7, x_2 = 6-1 = 5[/tex]  

Therefore, the solutions of the inequality are [tex]x<5[/tex] or [tex]x>7[/tex] (look at the graph below).

Now, we can calculate the probability as follows

                    [tex]P(X^2-12X+ 35 > 0) = P(X<5 \; \text{or} \; \text X>7)[/tex]

It is easier to calculate the probability using the complementary event.

The complementary event of [tex]X<5[/tex] or [tex]X>7[/tex] is

       [tex]\neg (X< 5 \; \vee \; X>7) \iff X>5 \;\wedge \; X<7 \iff 5 < X < 7[/tex]

and the probability of this event is

                      [tex]P(5<X<7) = 1 - P (X <5 \; \text{or} \; X>7)[/tex]

Therefore, our probability is

         [tex]P (X <5 \; \text{or} \; X>7) = 1- P(5<X<7) = 1 - \int\limits^7_5 f_x(x)\, dx \\\phantom{P (X <5 \; \text{or} \; X>7) }=1- \frac{1}{8} x \Big|_{5}^{7} = 1 -\frac{1}{8} (7 - 5) = 1-\frac{2}{8} = \frac{3}{4}[/tex]

Ver imagen vstamenkovic95
ACCESS MORE