Answer:
Explanation:
Given
Initial launch velocity [tex]v=160\ ft/s[/tex]
Launch angle [tex]\theta =25^{\circ}[/tex]
slope angle [tex]\phi =5^{\circ}[/tex]
Let d be the distance on the slope after which projectile lands
therefore horizontal distance covered by projectile [tex]x=d\cos 5[/tex]
Vertical distance covered by projectile [tex]y=d\sin 5[/tex]
Considering horizontal motion
Initial horizontal velocity [tex]v_x=v\cos 25[/tex]
[tex]d\cos5=160\cos 25\times t[/tex]
[tex]d=145.56t---1[/tex]
considering vertical motion
Initial vertical velocity [tex]v_y=v\sin 25[/tex]
[tex]-d\sin 25=160\sin25\cdot t-\frac{1}{2}gt^2[/tex]
[tex]-0.087t=67.60t-16.087t^2[/tex]
[tex]67.62t-16.087t^2+0.087d-----2[/tex]
put value of t in equation 2
[tex]80.28t-16.087t^2=0[/tex]
[tex]t(80.28-16.087t)=0[/tex]
[tex]t=4.99\s\ as\ t\neq 0[/tex]
substitute the value of t in equation 1
[tex]d=145.56\times 4.99=726.4\ ft[/tex]