Problem 11.104 A golfer hits a golf ball with an initial velocity of 160 ft/s at an angle of 25° with the horizontal. Knowing that the fairway slopes downward at an average angle of 5°, determine the distance d between the golfer and Point B where the ball first lands.

Respuesta :

Answer:

Explanation:

Given

Initial launch velocity [tex]v=160\ ft/s[/tex]

Launch angle [tex]\theta =25^{\circ}[/tex]

slope angle [tex]\phi =5^{\circ}[/tex]

Let d be the distance on the slope after which projectile lands

therefore horizontal distance covered by projectile [tex]x=d\cos 5[/tex]

Vertical distance covered by projectile [tex]y=d\sin 5[/tex]

Considering horizontal motion

Initial horizontal velocity [tex]v_x=v\cos 25[/tex]

[tex]d\cos5=160\cos 25\times t[/tex]

[tex]d=145.56t---1[/tex]

considering vertical motion

Initial vertical velocity [tex]v_y=v\sin 25[/tex]

[tex]-d\sin 25=160\sin25\cdot t-\frac{1}{2}gt^2[/tex]

[tex]-0.087t=67.60t-16.087t^2[/tex]

[tex]67.62t-16.087t^2+0.087d-----2[/tex]

put value of t in equation 2

[tex]80.28t-16.087t^2=0[/tex]

[tex]t(80.28-16.087t)=0[/tex]

[tex]t=4.99\s\ as\ t\neq 0[/tex]

substitute the value of t in equation 1

[tex]d=145.56\times 4.99=726.4\ ft[/tex]          

ACCESS MORE
EDU ACCESS
Universidad de Mexico