Answer:
-42
Step-by-step explanation:
The objective is to find the line integral of [tex]F[/tex] around the perimeter of the rectangle with corners (4,0), (4,3), (−3,3), (−3,0), traversed in that order.
We will use the Green's Theorem to evaluate this integral. The rectangle is presented below.
We have that
[tex]F(x,y) = 2(x+y)i + 8j \sin y = \langle 2(x+y), 8\sin y \rangle[/tex]
Therefore,
[tex]P(x,y) = 2(x+y) \quad \wedge \quad Q(x,y) = 8\sin y[/tex]
Let's calculate the needed partial derivatives.
[tex]P_y = \frac{\partial P}{\partial y} (x,y) = (2(x+y))'_y = 2\\Q_x =\frac{\partial Q}{\partial x} (x,y) = (8\sin y)'_x = 0[/tex]
Thus,
[tex]Q_x -P_y = 0 -2 = - 2[/tex]
Now, by the Green's theorem, we have
[tex]\oint_C F \,dr = \iint_D (Q_x-P_y)\,dA = \int \limits_{-3}^{4} \int \limits_{0}^{3} (-2)\,dy\, dx \\ \\\phantom{\oint_C F \,dr = \iint_D (Q_x-P_y)\,dA}= \int \limits_{-3}^{4} (-2y) \Big|_{0}^{3} \; dx\\ \phantom{\oint_C F \,dr = \iint_D (Q_x-P_y)\,dA}= \int \limits_{-3}^{4} (-6)\; dx = -6x \Big|_{-3}^{4} = -42[/tex]