Respuesta :
Answer with Explanation:
We are given that an electron excited from n=1 to n=5 and from n=2 to n=6.
We have to find that the photon of visible light (wavelength 400 to 700 nm) have sufficient energy .
We know that
[tex]\frac{1}{\lambda}=R(\frac{1}{n^2_1}-\frac{1}{n^2_2})[/tex]
Where R= Rydberg constant=[tex]1.097\times 10^7/m[/tex]
Using the formula
[tex]\frac{1}{\lambda}=1.097\times 10^7(1-\frac{1}{5^2})[/tex]
[tex]\frac{1}{\lambda}=1.097\times 10^7(\frac{25-1}{25})=1.097\times 10^7\times \frac{24}{25}[/tex]
[tex]\frac{1}{\lambda}=1.05312\times 10^7/m[/tex]
[tex]\lambda=\frac{1}{1.05312}\times 10^{-7}=9.5\times 10^{-8}=95\times 10^{-9}=95nm[/tex]
[tex]1nm=10^{-9}m[/tex]
[tex]\lambda=95nm[/tex]
Visible light lies in the region from 400nm-700nm.
It does not lie in this range .Therefore, photon does not have sufficient energy to excite an electron in hydrogen atom from the n=1 to n=5 energy state.
Now substitute [tex]n_1=2[/tex] and [tex]n_2=6[/tex]
[tex]\frac{1}{\lambda}=1.097\times 10^7(\frac{1}{2^2}-\frac{1}{6^2})[/tex]
[tex]\frac{1}{\lambda}=1.097\times 10^7(\frac{1}{4}-\frac{1}{36})[/tex]
[tex]\frac{1}{\lambda}=1.097\times 10^7(\frac{9-1}{36})[/tex]
[tex]\frac{1}{\lambda}=1.097\times 10^7\times \frac{8}{36}=0.244\times 10^7[/tex]
[tex]\lambda=\frac{1}{0.244}\times 10^{-7}=4.10\times 10^{-7}m[/tex]
[tex]\lambda=410\times 10^{-9}m=410 nm[/tex]
It lies in the given range.
Therefore, a photon of visible light have sufficient energy to excite an electron in a hydrogen atom from energy state n=2 to n=6.
The excitation from n = 2 to the n = 6 is achieved by a photon of wavelength 410 nm in the visible spectrum.
Using the Rydberg relation;
1/λ = R(1/nf^2 - 1/ni^2)
Where;
R = 1.097 × 10^7 m-1
nf = 5
ni = 1
1/λ = 1.097 × 10^7(1/1^2 - 1/5^2)
λ = 94.9 nm
A photon of visible light can not perform this excitation.
R = 1.097 × 10^7 m-1
nf = 6
ni = 2
1/λ = 1.097 × 10^7(1/2^2 - 1/6^2)
λ = 410nm
This lies within the visible spectrum and is achieved by visible light.
Learn more: https://brainly.com/question/6505878