Answer:
[tex]v(t) = (2t+1) \mathbb{i} +3t^2 \mathbb{j} +4t^3 \mathbb{k}[/tex]
[tex]r(t) = (t^2+t) \mathbb{i} +(t^3+2) \mathbb{j} +(t^4 - 3) \mathbb{k}[/tex]
Step-by-step explanation:
The velocity vector is the integral of the acceleration vector i.e.
[tex]v(t) = \int a(t) dt[/tex]
[tex]v(t) = \int (2 \mathbb{i}+6t \mathbb{j} 12t^2 \mathbb{k}) dt[/tex]
[tex]v(t) = 2t \mathbb{i}+3t^2 \mathbb{j} 4t^3 \mathbb{k} + C_1[/tex]
When [tex]t=0[/tex], [tex]v(0) = \mathbb{i}[/tex]. Inserting these values in [tex]v(t)[/tex],
[tex]C_1= \mathbb{i}[/tex]
[tex]v(t) = 2t \mathbb{i}+3t^2 \mathbb{j} 4t^3 \mathbb{k} + \mathbb{i}[/tex]
[tex]v(t) = (2t+1) \mathbb{i}+3t^2 \mathbb{j} 4t^3 \mathbb{k}[/tex]
The position vector is the integral of the velocity vector i.e.
[tex]r(t) = \int v(t) dt[/tex]
[tex]r(t) = \int ((2t+1) \mathbb{i}+3t^2 \mathbb{j} 4t^3 \mathbb{k}) dt[/tex]
[tex]r(t) = (t^2+t) \mathbb{i}+t^3 \mathbb{j} t^4 \mathbb{k} + C_2[/tex]
When [tex]t=0[/tex], [tex]r(t) =2\mathbb{j}-3\mathbb{k}[/tex]. Inserting these values in [tex]r(t)[/tex],
[tex]C_2=2\mathbb{j}-3\mathbb{k}[/tex]
[tex]r(t)= (t^2+t) \mathbb{i}+t^3 \mathbb{j}+ t^4 \mathbb{k} + 2\mathbb{j}-3\mathbb{k}[/tex]
[tex]r(t) = (t^2+t) \mathbb{i}+(t^3+2) \mathbb{j}+ (t^4-3) \mathbb{k}[/tex]