Answer:
0.0106491902979 m
Explanation:
[tex]v_0[/tex] = Velocity of jump
[tex]\theta_0[/tex] = Angle of jump
g = Acceleration due to gravity
Jump at Berlin
[tex]R_1=\dfrac{v_0sin2\theta_0}{g_1}=8.09\ m[/tex]
Jump at Melbourne
[tex]R_2=\dfrac{v_0sin2\theta_0}{g_2}[/tex]
The difference is
[tex]\Delta R=R_2-R_1\\\Rightarrow \Delta R=\dfrac{v_0sin2\theta_0}{g_2}-\dfrac{v_0sin2\theta_0}{g_1}\\\Rightarrow \Delta R=v_0sin2\theta_0(\dfrac{1}{g_2}-\dfrac{1}{g_1})\\\Rightarrow \Delta R=v_0sin2\theta_0(\dfrac{1}{g_2}-\dfrac{1}{g_1})\\\Rightarrow \Delta R=\dfrac{v_0sin2\theta_0}{g_1}(\dfrac{g1}{g2}-1)\\\Rightarrow \Delta R=R_1(\dfrac{g1}{g2}-1)\\\Rightarrow \Delta R=8.09(\dfrac{9.8128}{9.7999}-1)\\\Rightarrow \Delta R=0.0106491902979\ m[/tex]
The record would have differed by 0.0106491902979 m