Answer:
Exponentials and logarithms are inverses of each other.
Step-by-step explanation:
Exponentials and logarithms are inverses of each other.
For logarithmic function:
Domain = [tex]\left ( 0,\infty \right )[/tex], Range = [tex]\left ( -\infty ,\infty \right )[/tex]
Vertical asymptote is y - axis.
x - intercept is (1,0)
For exponential function:
Domain = [tex]\left ( -\infty ,\infty \right )[/tex], Range = [tex]\left ( 0,\infty \right )[/tex]
Horizontal asymptote is x - axis.
y- intercept is (0,1)
Both exponential and logarithmic functions are increasing.
For example:
Solve: [tex]\log x=\frac{\log 5+\log 3}{\log 3^2}[/tex]
[tex]\log x=\frac{\log 5+\log 3}{\log 3^2}\\\log x=\frac{\log (5\times 3)}{2\log 3}\,\,\left \{ \because \log (ab)=\log a+\log b\,,\,\log a^b=b\log a \right \}\\=\frac{\log 15}{2\log 3}[/tex]
[tex]\Rightarrow \log x=\frac{\log 15}{2\log 3}\\\Rightarrow x=e^{\frac{\log 15}{2\log 3}}\,\,\left \{ \because \log x=y\Rightarrow x=e^y \right \}[/tex]