What is the relationship between exponentials and logarithms? How can you use these to solve equations? Provide an example in your explanation.

Respuesta :

Answer:

Exponentials and logarithms are inverses of each other.

Step-by-step explanation:

Exponentials and logarithms are inverses of each other.

For logarithmic function:

Domain = [tex]\left ( 0,\infty \right )[/tex], Range = [tex]\left ( -\infty ,\infty \right )[/tex]

Vertical asymptote is y - axis.

x - intercept is (1,0)

For exponential function:

Domain = [tex]\left ( -\infty ,\infty \right )[/tex], Range = [tex]\left ( 0,\infty \right )[/tex]

Horizontal asymptote is x - axis.

y- intercept is (0,1)

Both exponential and logarithmic functions are increasing.

For example:

Solve: [tex]\log x=\frac{\log 5+\log 3}{\log 3^2}[/tex]

[tex]\log x=\frac{\log 5+\log 3}{\log 3^2}\\\log x=\frac{\log (5\times 3)}{2\log 3}\,\,\left \{ \because \log (ab)=\log a+\log b\,,\,\log a^b=b\log a \right \}\\=\frac{\log 15}{2\log 3}[/tex]

[tex]\Rightarrow \log x=\frac{\log 15}{2\log 3}\\\Rightarrow x=e^{\frac{\log 15}{2\log 3}}\,\,\left \{ \because \log x=y\Rightarrow x=e^y \right \}[/tex]

Otras preguntas

ACCESS MORE
EDU ACCESS
Universidad de Mexico